Within-population Y-linked genetic variation for lifespan in *Drosophila melanogaster*

R. M. GRIFFIN*, D. LE GALL†, H. SCHIELZETH‡ & U. FRIBERG§

*Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
†Department of Biology, École Normale Supérieure de Cachan, Cachan, France
‡Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
§IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden

Keywords:
intralocus sexual conflict; longevity; sex chromosomes; sexual dimorphism; Y chromosome.

Abstract

The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of *Drosophila melanogaster*. This species’ Y chromosome contains only 13 protein-coding genes, is almost entirely heterochromatic and is not necessary for male viability. Population genetic theory further suggests that non-neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the *D. melanogaster* Y chromosome trans-regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y-linked variation in lifespan within a population of *D. melanogaster*. Assessing variation for lifespan provides a powerful test because lifespan (i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, (ii) is influenced by many genes, which provides the Y with many potential regulatory targets and (iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y-linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome.

Introduction

The potential for adaptive evolution of phenotypic traits through the Y chromosome is currently being re-evaluated (Mank, 2012). Once a pair of neo-Y and neo-X chromosomes stops recombining, the Y chromosome becomes exposed to a range of degenerative processes (Charlesworth & Charlesworth, 2000; Bachtrog, 2013). These include Müller’s ratchet, Hill–Robertson interference, background selection and genetic hitchhiking (Charlesworth & Charlesworth, 2000; Kaiser & Charlesworth, 2010). In concert with the small effective population size of the Y, these processes act to decrease the efficacy of selection, which eventually should result in a gradual shut down, and later loss, of genes on the Y chromosome (Rice, 1996; Bachtrog, 2005; Zhou & Bachtrog, 2012). Population genetic models also predict that the Y chromosome can only maintain non-neutral genetic variation under very special circumstances (Clark, 1987, 1990). According to theory, a mature Y chromosome should hence have a very limited capacity to maintain standing genetic variation for phenotypic traits.

In accordance with above scenario, the Y chromosome of *Drosophila melanogaster* features just 13 protein-coding genes (Carvalho et al., 2001; Carvalho & Clark,
Y-linked variation for lifespan

The finding that the Y chromosome has a substantial capacity to regulate gene expression warrants further investigations into its effect on phenotypic traits. Of particular interest are those which show sexual dimorphism, as the Y chromosome masculinizes the transcriptome (Lemos et al., 2008). Lifespan shows sexual dimorphism in many species (Maklakov & Lummaa, 2013), including D. melanogaster (e.g. Lehtovaara et al., 2013). In addition to being sexually dimorphic, there are also other aspects of lifespan which suggest it should be a good candidate trait to assess for Y-linked genetic effects. First, lifespan is a life-history trait and therefore is presumably affected by a large number of genes. This should provide the Y chromosome with ample targets for gene regulation, despite likely having a limited set of mechanisms through which it can regulate expression (Sackton & Hartl, 2013; Francisco & Lemos, 2014). The Y chromosome is furthermore seemingly enriched for variation affecting metabolism and mitochondrial function (Lemos et al., 2008, 2010; Paredes et al., 2011; Sackton et al., 2011), which should have links to lifespan (Balaban et al., 2005). In addition, it has been shown that lifespan is sensitive to modulations of the heterochromatin landscape (Larson et al., 2012), which is the main mechanism through which the Y chromosome is believed to exert its gene regulatory effect (Sackton & Hartl, 2013; Francisco & Lemos, 2014).

Here we assess the influence of the Y chromosome on within-population genetic variation for lifespan in D. melanogaster. To accomplish this, we cloned and amplified a set of Y chromosomes, which we expressed in a common genetic background. This allowed us to measure the effect of the Y chromosome independent from all other genomic components. We detect a small, yet statistically significant, effect of the Y chromosome. Our study thus shows that the Y chromosome does contribute to phenotypic variation and that it has the potential to influence the evolution of sexual dimorphism from standing genetic variation, but only to a limited extent because the estimated variance is small.

Materials and methods

Y chromosome substitution lines

We studied within-population genetic variation in lifespan among a set of 33 Y chromosomes, all derived from the Drosophila Genetic Reference Panel (DGRP). The DGRP lines were created through 20 generations of sister–brother mating from a set of flies collected in 2003 from Raleigh, North Carolina (Mackay et al., 2012). The flies were kept under standard conditions throughout the experiment (12:12 light–dark cycle, 60% humidity, 25 °C and on a standard yeast–sugar diet). By a series of backcrosses (Fig. 1), each of the focal Y chromosomes was placed in a common homozygous genetic background from the same population (DGRP-486,
In this way, studied lines only differed genetically with respect to their Y chromosome, and any variation among lines thus has to be linked to this chromosome.

Lifespan assay

Focal males were produced by pairing 20 males from each Y-line with 40 virgin DGRP-486 females, in multiple vials over three consecutive blocks. Vials were trimmed to contain approximately 150 eggs, to standardize larval competition. Ten days after oviposition, we collected multiple vials of 30 males per line, under a light CO₂ anaesthesia (<4 min of exposure). Males were housed without females, as we have shown in a previous experiment that housing males with other males or females only have a limited effect on average lifespan (~10%) and have no detectable effect on the magnitude of genetic variation (Lehtovaara et al., 2013). Experimental males were transferred without anaesthesia to fresh food on day 1, 2 and 5, and every 2 days thereafter, until all flies had died. At each transfer, we scored deaths and discarded dead flies. On average, we assayed the lifespan of 411 (SD = 81) focal males per line and 29.7 (SD = 1.5) flies per vial.

Statistical analysis

Variation in lifespan was analysed using mixed-effects models fitted by Markov chain Monte Carlo (MCMC)
sampling, using the MCMCglmm package (Hadfield, 2010) in R version 3.1.2 (R Core Team, 2014). A random-effects model assuming Gaussian error distributions was used with lifespan as the response variable, block as a fixed effect, and vial and line (DGRP line of origin) as random effects. Parameter-expanded priors, suited for estimation of variances which are expected to be small, were used to estimate variances for the random effects, with the prior defined as prior variance (V) of 1, a belief parameter (nu) of 1, prior mean (alpha.mu) of 0 and prior covariance (alpha.V) of 1000 (Hadfield, 2010; J. Hadfield, personal communication). A weak prior was used for the residual variance where V = 1 and nu = 0.002 (Hadfield, 2010). Results were robust to alternative values of V and nu. Two independent MCMC chains were run for 500 000 iterations, with a burn-in of 100 000 iterations and a thinning interval of 100 iterations. Further, to ensure that the line variance estimate represents a true signal, rather than an artefact introduced by the sampling algorithm when estimating variances near zero, we randomized each vial’s assignment with respect to Y-line and generated 100 additional chains, one for each of 100 independent randomizations. The posterior distributions of line variance were then compared to the original distributions. This processing confirmed that we had detected a true signal of the Y chromosome (see Results), because the observed data do not stack values at zero, whereas the randomized do (Fig. 2). Furthermore, results were confirmed using restricted maximum likelihood (REML) in the R package lme4 (Bates et al., 2015) and are reported with standard deviations and P-values. Convergence was checked visually for each parameter and replicate MCMC chain. From the MCMC chains, we extracted mean lifespan and estimates for each variance component, as well as standard errors and 95% credible intervals for each estimate.

Results
Mean male lifespan across all 33 Y lines was estimated to 66.85 days (± 0.31 SE, 95% CI [66.23–67.50], Fig. 3). The variance explained by Y-line (variance among Y chromosomes) was 0.65 (± 0.37 SE, 95% CI [0.09–1.52], Fig. 2), and the total phenotypic variance was estimated to 153.97 (± 1.93 SE, 95% CI [150.21–157.73]). The vial variance was 4.42 (± 0.66 SE, 95% CI [3.21–5.81]), and block variance was 0.89 (± 0.27 SE, 95% CI [0.42–1.47], estimated as the variance in the predicted values of the fixed effect). Variance among Y chromosomes therefore explained 0.4% (± 0.2% SE, 95% CI [0.2–1.0%]) of the total phenotypic variance in male lifespan. The genetic and phenotypic coefficients of variation were 0.012 (± 0.004 SE, 95% CI [0.005–0.019]) and 0.190 (± 0.001 SE, 95% CI [0.187–0.193], respectively. Using REML, we show

\[
\begin{align*}
\text{Observed data} & \quad \text{Randomized data (100 chains)} & \quad \text{Randomized data (pooled)} \\
\end{align*}
\]

Fig. 2 Plots of the posterior distributions for estimates of line variance, obtained from the analyses with the observed data (red) and the randomized vial data (black/grey), see Materials and Methods for details. Randomization of vial label causes lower, and often zero, estimates of variance, whereas the observed data produce variance estimates which are higher and do not stack against estimates of zero variance.

Two earlier assays of the DGRP lines have measured the total genetic variance for lifespan across the whole genome. They estimate genetic variance to be 93.75 (Ivanov et al., 2015) and 104.34 (Ayroles et al., 2009). Dividing our estimate of the Y-linked genetic variance through these estimates suggests that the Y chromosome explains approximately 0.65% (0.69%, 0.62%) of the total genetic variation, although experimental conditions were not identical.

Discussion
Motivated by the newly discovered large gene regulatory capacity of the Y chromosome (Lemos et al., 2008, 2010; Paredes & Maggert, 2009; Jiang et al., 2010; Paredes et al., 2011; Sackton et al., 2011), and the possibility that the Y chromosome might play a larger role in phenotypic evolution than previously appreciated, we here assessed the Y chromosome’s impact on within-population genetic variation for lifespan. In support of the emerging view, we find that the Y chromosome harbours genetic variation for this trait. The effect is small, but suggests that the Y has the potential to contribute to phenotypic evolution from standing genetic variation.
The evolution of sexual dimorphism is constrained by males and females sharing the same genome (Lande, 1980; Bonduriansky & Rowe, 2005; Bonduriansky & Chenoweth, 2009; Poissant et al., 2010; Lewis et al., 2011; Gosden et al., 2012; Griffin et al., 2013; Pennell & Morrow, 2013; Ingleby et al., 2014). This constraint does not, however, concern the Y chromosome, which is free to accumulate male-specific adaptations independently of their effect in females, due to its strict inheritance from father to son. Proof of this principle recently gained support from a study of the W chromosome in chickens, where the expression level of W-linked genes rapidly responded to female-limited selection (Moghaddam et al., 2012). From the perspective that evolution of sexual dimorphism in general is constrained, the Y-linked genetic variation found here may thus be important in facilitating evolution of sex differences, despite being small in its effect size. It is also possible that the effect of the Y chromosome detected here have larger pleiotropic effects on other key traits in males.

The small Y-linked effect we report here is not in conflict with the relatively larger effects on gene expression and fertility observed at the between-population/species level (Lemos et al., 2008; Sackton et al., 2011). Population genetic models suggest selected variation should only rarely be maintained at the Y chromosome (Clark, 1987, 1990), whereas differences at the between-population level can rapidly accumulate through fixation of slightly deleterious mutations, because the Y chromosome does not recombine and has a relatively small effective population size. What probably helps maintain a small amount of variation is that the Y presumably has a larger mutational input than previously thought, where the whole chromosome acts as a single locus determining the amount of heterochromatin at other chromosomes, which should shift the equilibrium frequency towards more variation at mutation–selection–drift balance.

Among the genes that the Y chromosome regulates, those interacting with mitochondrial genes or associated with metabolism are over-represented (Lemos et al., 2008, 2010; Paredes et al., 2011; Sackton et al., 2011). The idea that there is an association between metabolism and lifespan, mediated through the ‘rate of living hypothesis’, has been around for a long time, but the empirical evidence for this connection is weak at best (Speakman, 2005). More direct evidence has been established for a link between mitochondrial function and lifespan (e.g. James & Ballard, 2003; Trifunovic et al., 2004; Maklakov et al., 2006). This link appears especially strong in males (Camus et al., 2012), presumably because mutations with adverse effects on males, and neutral effects on females, are free to accumulate in mitochondria (Frank & Hurst, 1996; Friberg & Dolving, 2008; Innocenti et al., 2011). To reduce the effect of such male detrimental mutations, males may evolve counter adaptations (Yee et al., 2013; Dean et al., 2015). It is thus not improbable that the Y chromosome plays a role in this context (Rogell et al., 2014) and that this is part of how the Y mediates the variation in male lifespan detected here.

We are only aware of one other study testing for an effect of the Y chromosome on lifespan in Drosophila. In this study, males having either a Drosophila sechellia or Drosophila simulans Y chromosome, placed in a D. simulans genetic background, were compared (Johnson et al., 1993). The estimated difference was sizable (14%) but marginally nonsignificant, potentially due to a relatively small sample size. For guppies, a within-population effect has been reported (Brooks, 2000), and in a study between two populations of seed beetle, no effect was detected (Fox et al., 2004).

Our approach of placing Y chromosomes in a standardized genetic background provides a powerful test for Y-linked within-population genetic variation. The drawback with this method is that we are unable to...
discern whether the variation is additive, or largely locked into epistatic interactions with the rest of the genome. Previous studies of the *D. melanogaster* Y chromosome have emphasized the prevalence of Y by genetic background interactions, for both gene expression (Jiang et al., 2010) and fitness (Chippindale & Rice, 2001), although theory suggests such should rarely maintain variation (Clark, 1987, 1990). However, the mitochondria, which shares many of its characteristics with the Y chromosome (haploid genome selected exclusively in one sex with small effective population size), only displays interactions with the genetic background for females fitness within a population of *D. melanogaster* (Dowling et al., 2007), whereas the same set of mt-types displayed additive genetic variation for female lifespan (Maklakov et al., 2006).

In conclusion, our study provides support for Y-linked standing genetic variation in lifespan, but the effect is small and required high sample size to detect. Given the facts which are lined up in favour of finding a Y-linked effect on lifespan (see Introduction), it is plausible that the effect on other sexually dimorphic traits is frequently even smaller, but the reverse may apply to male-limited traits on which the Y chromosome may have a larger gene regulatory influence. This may explain why a Y-linked effect on within-population genetic variation only rarely has been reported. Our data nonetheless support that the Y chromosome could have a small but distinct capacity to contribute to phenotypic evolution from standing genetic variation, especially for traits where sex-specific evolution is constrained elsewhere in the genome.

Acknowledgments

We thank Aivars Cirulis for excellent technical assistance, and Christopher Kimber and two anonymous reviewers for constructive comments on an earlier draft of this study. The study was supported by grants from the Swedish Foundation for Strategic Research, Carls Tryggers Foundation and the Swedish Research Council to UF. HS was supported by the German Research Foundation (DFG; SCHI 1188/1-1).

References

Data deposited at Dryad: doi: 10.5061/dryad.kc33b

Received 10 June 2015; revised 24 July 2015; accepted 24 July 2015