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Abstract

Objectives: Revealing causal effects from correlative data is very challenging and a
contemporary problem in human life history research owing to the lack of experimen-
tal approach. Problems with causal inference arising from measurement error in
independent variables, whether related either to inaccurate measurement technique or
validity of measurements, seem not well-known in this field. The aim of this study is
to show how structural equation modeling (SEM) with latent variables can be applied
to account for measurement error in independent variables when the researcher has
recorded several indicators of a hypothesized latent construct.

Methods: As a simple example of this approach, measurement error in lifetime allo-
cation of resources to reproduction in Finnish preindustrial women is modelled in the
context of the survival cost of reproduction. In humans, lifetime energetic resources
allocated in reproduction are almost impossible to quantify with precision and, thus,
typically used measures of lifetime reproductive effort (e.g., lifetime reproductive suc-
cess and parity) are likely to be plagued by measurement error. These results are
contrasted with those obtained from a traditional regression approach where the single
best proxy of lifetime reproductive effort available in the data is used for inference.

Results: As expected, the inability to account for measurement error in women’s life-
time reproductive effort resulted in the underestimation of its underlying effect size
on post-reproductive survival.

Conclusions: This article emphasizes the advantages that the SEM framework can
provide in handling measurement error via multiple-indicator latent variables in
human life history studies.

1 | INTRODUCTION

It is a commonly held view in evolutionary biology that
causal inference is tied to experimental approach and that
correlative data cannot be used to draw causal conclusions
(Roff, 2002; Stearns, 1992). This problem concerns particu-
larly human life history studies, because the manipulation of
life history traits in humans is not feasible owing to ethical
reasons. Most researchers in our field recognize that such
inferential problems are due to the nonrandom selection of
study subjects or to missing confounding variables not
included in the analysis (Gagnon et al., 2009; Sear, 2007).
But few have seemed to recognize that measurement error in

independent variables, defined as the difference between a
value measured and the true value of scientific interest, has
also detrimental consequences on causal inference (Antona-
kis, Bendahan, Jacquart, & Lalive, 2010; Antonakis, Benda-
han, Jacquart, & Lalive, 2014; Pearl, 2009). Measurement
error, non-random selection, and omitted variables all under-
mine causal inference because they all introduce a correlation
between independent variables and the model errors (e.g., of
measurement error, please see the Appendix), thus violating
a key assumption for any regression modeling (Antonakis
et al., 2010, 2014; Pearl, 2009). Of these, the problem of
missing variables is, however, the most severe in human evo-
lutionary research as it is almost impossible to include all
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variables, even the theoretically important environmental-
and individual-level variables, into the same analysis.

There are several processes by which measurement error
can contaminate the true scores of the target construct and
hence reduce its reliability (i.e., the ratio of variance
explained by true scores to the total variance). For example,
the measurement instrument may not be precise enough or it
may be sensitive to ambient environmental conditions or
interobserver variability, thus introducing measurement error
to the underlying construct of interest. Potentially far more
important, but rarely considered thoroughly in evolutionary
studies in general, is the validity of the measurements used
to represent the constructs of interest (Houle, Pelabon, Wag-
ner, & Hansen, 2011). Low validity means that the
researcher has not directly measured (unintentionally or not)
the biological construct she/he is interested in based on the
underlying theory. Instead, the researcher has recorded a
proxy or proxies of the construct that are then used in regres-
sion modeling as they would be perfectly reliable measures
of these constructs.

In bivariate associations measurement error in an inde-
pendent variable skews its regression or correlation coeffi-
cient toward zero and the standard errors of the point
estimate are overestimated (Antonakis et al., 2010, 2014).
Moreover, partial regression coefficients become causally
invalid in an unpredictable manner and the overall statistical
power decreases when the model structure and complexity
increases due to the inclusion of intercorrelated predictors
suffering from measurement error and when product terms of
these variables (i.e., interactions and higher-order polyno-
mials) are modelled (Bollen, 1989; Cole & Preacher, 2014;
Freckleton, 2011; Pugesek & Tomer, 1995). Despite the det-
rimental consequences on the interpretation of regression
coefficients in correlative data, measurement error in inde-
pendent variables has received yet surprisingly little attention
in life history studies (but see Adolph & Hardin, 2007;
Freckleton, 2011; Kendall, 2015; Pugesek & Tomer, 1995).
For example, Pugesek and Tomer (1995) clearly showed by
simulations in the context of natural selection that even a
small amount of measurement error in phenotypic traits,
whether involving the trait of main focus or other traits in the
model, will severely bias our conclusions on the magnitude
of phenotypic selection. It is important to note that measure-
ment error in the response variable is absorbed into the
model error term and thus does not make the unstandardized
regression estimates inconsistent, although it underestimates
the amount of explained variance and reduces statistical
power (Antonakis et al., 2010; Shipley, 2000).

But why should we worry about measurement error in
studies of human life history evolution? One of the most
studied questions of human life history evolution has been
whether women, who invest more direct energetic resources
in reproduction than men, sacrifice their longevity for higher

reproductive success. Such a link is the core of the evolution-
ary explanations of senescence (Kirkwood & Rose, 1991;
Williams, 1957). In particular, the evolution of senescence
based on disposable soma theory states that it is the amount
of limited resources invested in reproduction, or reproductive
effort, during the lifetime in relation to the environmental
resources available that matters in terms of old-age survival
(Kirkwood & Rose 1991). But so far, evidence for the pre-
dicted survival costs of reproduction are surprisingly scarce
in humans (reviewed in Gagnon, 2015; Helle, Lummaa, &
Jokela, 2005; Hurt, Ronsmans, & Thomas, 2006; Jasienska,
2009; Le Bourg, 2007) and the reasons why we do not gen-
erally see such costs in most of the human populations stud-
ied remain elusive.

Why should studies that measure lifetime reproductive
effort in long-lived vertebrates with parental care like in
humans mind measurement error? In ideal settings, one
should attempt to measure women’s physiological energy
expenditure during every reproductive attempt proportional
to the overall energy available over their whole reproductive
lifespan to estimate the total amount of resources allocated in
reproduction (Jasienska, 2009). Obviously, this is impossible
in retrospective demographic studies, and likely almost
impossible even in prospective studies, owing to the high
amount of time and money needed to conduct such a study.
Traditionally, lifetime reproductive effort in humans has
been measured as the total number of offspring born or sur-
viving to adulthood (Gagnon, 2015; Helle et al., 2005; Hurt
et al., 2006; Jasienska, 2009; Le Bourg, 2007), and in some
cases additionally as brood size (e.g., Helle, Lummaa, &
Jokela, 2004) or skewed offspring sex ratio (e.g., Helle &
Lummaa, 2013; Helle, Lummaa, & Jokela, 2002). While
such demographic variables are associated with the energetic
resources allocated in lifetime reproduction, they are unlikely
to perfectly reflect the total lifetime reproductive effort, even
in concert. That is, aside from the potential measurement
error arising from the direct measurement of the life history
traits in question, variables measuring merely reproductive
output likely miss parental energetic resources allocated in
offspring, for example, in terms of lactation and care during
childhood. In other words, even though women’s lifetime
number of births could be counted without error, measuring
their lifetime reproductive effort in the currency predicted by
the theory (i.e., as energetic resources) probably cannot be
done. As measures of post-natal allocation in offspring are
commonly lacking from demographic data sets in humans
(Jasienska, 2009), the discrepancy between the estimated and
realized lifetime reproductive effort can thus be severe.

In this article, measurement error in female lifetime repro-
ductive effort is addressed by applying structural equation
modeling (SEM) with latent variables (Bollen, 1989; Kline,
2015). Latent variables are existing constructs but unmeasured
using the current data at hand. SEM can handle measurement
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error in independent (and dependent) variables when the
researcher has recorded several indicator variables of a
hypothesized latent construct or has knowledge of the amount
of measurement error in the variables of interest. This is
accomplished by partitioning the overall variance of a latent
variable to the “true variance” and to the “error variance,” con-
taining errors in measurement. Because the estimation of the
amount of error variance without clear guidance (e.g., unavail-
ability of repeated measures or test-retest approach) may be a
very error prone task, the utility of SEM to handle measure-
ment error with multiple-indicator latent variables is high-
lighted here. A comprehensive treatment of measurement error
in covariates in statistics is given, for example, in Carroll et al.
(2006) and in Buonaccorsi (2010).

As a simple example of the SEM approach, we consider
here measurement error in lifetime reproductive effort in
women, measured by three female reproductive life history
traits. In order to demonstrate the effect of measurement error
in predictors on the interpretation of regression estimates, we
relate this latent lifetime reproductive effort to an individual’s
probability of surviving beyond menopause. The resulting
regression estimate is then contrasted with the estimate
obtained from a traditional regression approach where the
single best proxy of lifetime reproductive effort available in
the data is used to make biological inference.

2 | MATERIAL AND METHODS

2.1 | Demographic data

We used demographic data collected from historical Finnish
parish registers kept by the Lutheran church that allow indi-
viduals to be followed from birth, through their reproductive
history and adult life, to death (Luther, 1993). These data,
based on family reconstructions, were collected from four
parishes, namely Enonteki€o, Inari, Utsjoki, and Sodankylä,
located in northern Finland (Helle et al., 2014). In this area,
the systematic collection of birth records started in the 1730s
in Sodankylä and in the 1750s in Enonteki€o, Inari, and Uts-
joki. That is, the records include all individuals born in those

parishes since then, and their parents and other, potentially
non-kin family members born before. These data consist of
two distinct ethnic groups: the indigenous Sami and the set-
tled Finns, but mixed marriages between these groups were
rare during the study period (Enbuske, 2008). Sami practised
mainly hunting, fishing and reindeer herding but also small-
scale agriculture whereas settled Finns relied mainly on agri-
culture but also on traditional subsistence (Enbuske, 2008).
Owing to the historical nature of the data, it contains individ-
uals who lacked modern birth-control methods and advance-
ments of modern medical care.

From these data, we recorded information on three demo-
graphic life history traits that should reflect the amount of
women’s lifetime reproductive effort: offspring number sur-
viving to adulthood (age 18) (OFS), mean inter-birth interval
(MIBI), and age at last reproduction (ALR; see Table 1 for
descriptive statistics). We also recorded women’s lifespans to
determine whether a woman survived to the post-
menopausal period, defined here as the age of 50 years, or
not. Note that the cut-off value of the age of 50 years has
been commonly used in studies of human reproduction-
longevity trade-offs (Gagnon, 2015; Helle et al., 2005; Hurt
et al., 2006; Jasienska, 2009; Le Bourg, 2007; but see Helle
& Lummaa, 2013). The original sample size was 3,054
women. However, owing to the inclusion of women who
married only once and to the missing values of their life his-
tory traits and birth year (i.e., listwise deletion was used), the
final sample size was 664 women. Please note that the varia-
bles used here are selected for illustrative purposes only, and
this example is not intended to represent a comprehensive
life history analysis of the survival costs of reproduction in
human females. A far more complete treatment of the subject
will be given elsewhere (Helle, unpublished manuscript).

2.2 | Structural equation modeling

SEM with multiple-indicator latent variables was used to
model measurement error in women’s lifetime reproductive
effort (Bollen, 1989; Kline, 2015). This model assumed an
unobserved theoretical construct, labeled as women’s

TABLE 1 Descriptive statistics of variables used in this study (n5 664)

Variable Mean s.d. Min Max Proportion

Survival beyond age of 50 year

05 did not survive 22.6%

15 survived 77.4%

Number of offspring surviving 4.04 2.22 0 13

Mean interbirth interval (yrs) 2.09 1.08 0 7.5

Age at last reproduction (yrs) 39.3 6.06 14 49
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lifetime reproductive effort. This continuous-scale latent vari-
able was assumed to cause variation in multiple
reproduction-related variables observed by the researcher,
but that by themselves (either separately or jointly) cannot be
taken to represent error-free measures of women’s lifetime
reproductive effort (Kline, 2015). In other words, the
reproduction-related life history traits were assumed to result
from an individual’s lifetime reproductive effort and, thus, to
have some shared variance (termed as common variance).
Hence, the life history traits are called effect indicators,
caused by the latent variable, and they are modelled as
response variables in structural equations (Bollen, 1989).
Because of the theoretical expectation that effect indicators
are caused by the underlying latent construct, the indicators
should show positive and at least moderately high intercorre-
lations (Kline, 2015). The error variances of such latent vari-
ables represent the amount of unobserved omitted causes
contributing to the variance of those latents (Bollen, 1989).
Based on the indicators included in the analysis, SEM thus
partitions the overall variance of a latent variable into its
underlying “true variance” and into nuisance “error variance”
that includes errors in measurement. Residual variances of

the effect indicators, which are also considered as latent vari-
ables, represent the amount of variance specific to that indi-
cator not accounted for by the latent variable (termed as
unique variance). These residual variances are by default
assumed to be uncorrelated among the indicators, but that
assumption can be relaxed if theoretically justified (Bollen,
1989; Kline, 2015). If only one latent variable is estimated in
the model, one needs at least three freely estimated indicators
in order to have an identified model (Kline, 2015).

How the observed effect indicators are associated with
the latent variables are called “loadings” and they are esti-
mated by the means of linear regression from a latent vari-
able to its indicators (Bollen, 1989; Kline, 2015). Therefore,
these loadings tell how much the values of indicators change
when the latent variable changes one unit. If the indicators
are measured on different scales, variance-standardized solu-
tions are usually also reported (Kline, 2015). Because latent
variables are arbitrary constructs, they have no inherent met-
ric and usually the most important effect indicator (i.e., a
marker indicator) is set to have a fixed unstandardized load-
ing of 1 to set the scale for the latent variable (Hayduk &
Littvay, 2012). Another option is to fix the latent variance to
unity, so that all the unstandardized loadings of effect indica-
tors can be estimated. Anatically, these two approaches pro-
duce identical results and model fit (Bollen, 1989).

The equations for a model with one latent variable with,
let’s say, three indicators are

g15a11 k1h11 E1
g25a21 k2h11 E2
g35a31 k3h11 E3

where g’s are observed variables, or effect indicators, that
depend on the latent variable h1, and a’s are intercepts for
the indicators. The parameters k index the association
between the indicators and the latent variable, and E’s repre-
sent the unique variances of indicators that are assumed to
have zero covariance (Kline, 2015).

The SEM used to examine the association between wom-
en’s lifetime reproductive effort and its influence on whether
they survived to the post-menopausal period is shown in Fig-
ure 1A. The SEM has two parts: the measurement model part
that describes how the observed effect indicators load onto a
latent variable and the structural model part that describes the
assumed causal links between the variables of main interest,
whether latents or observed. In SEM, these two are combined
with simultaneous equations to accomplish unbiased estima-
tion of structural parameters while accounting for the influence
of measurement uncertainty in constructs by the measurement
model (Bollen, 1989; Kline, 2015). It is important to realize
that in ecological and evolutionary studies we are usually
interested in structural parameters. That is, using the current
example, the researcher is now interested in how the latent

FIGURE 1 A graphical representation of the SEMwith multiple-
indicator latent variable (A) and the multiple regressionmodel (B). In
SEM,women’s lifetime reproductive effort is measured byOFS,MIBI,
and ALR, which are modeled as effect indicators (i.e., their variation is
caused by the latent variable). Observed variables are represented as boxes
and unobserved latent variables as circles. Single-headed arrows are used
for three purposes: (i) when pointing from a latent to observed indicators,
they represent factor loadings (k’s); (ii) when pointing at observed or
unobserved response variables, they represent structural path coefficients
(b’s) and; (iii) when pointing at nondiscrete indicators of latent variables,
they represent their residual variances (d). Double-headed arrows repre-
sent the variances of latent variables (/) or covariances among independ-
ent variables. Please note that parameters for the location of variables
(intercepts and thresholds for continuous and discrete variables, respec-
tively) are omitted for simplicity
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variable measuring lifetime reproductive effort in women is
related to their survival probability to the postmenopausal
period and not how the individual indicators of lifetime repro-
ductive effort are related to the outcome as in a regular multi-
ple regression approach (Figure 1).

The effect indicators reflecting women’s lifetime repro-
ductive effort, modelled as a continuous latent variable, were
the number of offspring surviving to adulthood (OFS), mean
interbirth interval (MIBI), and ALR (Figure 1A). The ration-
ale for using the number of offspring surviving to adulthood
as an effect indicator of women’s lifetime reproductive suc-
cess is rather self-explanatory since it is widely used as the
best single proxy of their lifetime reproductive effort. Hence,
it was used as a marker indicator to set the scale for the latent
lifetime reproductive effort. This also helps to contrast the
results with the multiple regression model because the
regression coefficients from both models are now on the
same scale. Moreover, MIBI and ALR reflect women’s life-
time reproductive effort because birth spacing is associated
with the offspring’s postnatal mortality and the duration of
lactation, and because ALR characterizes the length of wom-
en’s “reproductive window.” And, as assumed by the mea-
surement model, all these effect indicators show at least
moderate positive intercorrelations (Table 2). Please note that
women’s age at first reproduction would not be a suitable for
an effect indicator here, because it is negatively correlated
with the number of offspring surviving to adulthood (Helle
et al., 2005). The reliability of the latent variable, women’s
lifetime reproductive effort, was estimated by calculating its
composite reliability (Raykov, 2004). Whether a woman sur-
vived to the postmenopausal period or not was treated as an
observed dichotomous response variable (Figure 1).

The regression estimate of women’s latent lifetime repro-
ductive effort on whether they survived to the postmeno-
pausal period or not was compared to a regular regression
estimate obtained from a traditional multiple regression
model. In this model, the single best indicator of women’s
lifetime reproductive effort in these data, their number of
adult offspring, is regressed on whether women survived to
the post-menopausal period or not (Figure 1B). To make the
comparison appropriate to the SEM, MIBI and ALR were
added into the model as continuous covariates (Figure 1B).

Because the response variable was dichotomous, logit
link function was used as in a regular logistic regression

analysis to model the probability that a woman survived to
the postmenopausa period. To avoid selection bias among
the individuals born prior to systematic data collection,
study parish, and birth cohort were combined to form
unique stratum that were used in disproportionate stratifica-
tion with differing sampling weights (i.e., proportion of
individuals sampled differed between the stratum before
systematic data collection) to obtain less-biased parameters
and their standard errors (Stapleton, 2013). Owing to the
use of sampling weights, a pseudo maximum likelihood
estimator with robust standard errors was applied to esti-
mate the model parameters. Please note that no evaluation
of global model fit to the data was conducted as commonly
done in SEM. This is because the aim here is not to biolog-
ically interpret the estimates from this simple example and
because multiple regression models are always saturated,
thus providing a perfect fit to the data. Instead, the focus
here was on the local estimation of the coefficient from
women’s lifetime reproductive effort or their number of
adult offspring to their survival probability to the post-
menopausal period. Analyses were conducted with Mplus
version 7.4 (Muth�en & Muth�en, 2015).

3 | RESULTS

The results of the SEM are shown in Table 3. The measure-
ment part of the model shows that all indicators loaded
significantly and positively onto the latent lifetime reproduc-
tive effort (Table 2). A one unit increase in women’s lifetime
reproductive effort, scaled by the number of adult offspring,
was associated with 0.51 (95% CIs5 0.41, 0.60) year
increase in their MIBI and with 3.86 (95% CIs5 2.76, 4.96)
year increase in their ALR (Table 3). A standardized solution
for these loadings shows that women’s ALR responded most
strongly to variation in their lifetime reproductive effort, fol-
lowed by MIBI and the number of surviving offspring. The
proportion of unique indicator variance explained by wom-
en’s lifetime reproductive effort was 32.7, 35.5, and 65.7%
for OFS, MIBIs, and ALR, respectively. The composite reli-
ability of women’s lifetime reproductive effort was 0.66
(95% CIs5 0.55, 0.77), meaning that the indicators used
here explained on average 66% of the variance in women’s
lifetime reproductive effort.

The structural part of the SEM indicated that one unit
increase in women’s lifetime reproductive effort was associ-
ated with 2.67-fold (95% CIs5 1.59, 3.75) higher odds of
surviving to the postmenopausal period (Table 3).

The results of the multiple regression model are shown in
Table 4. According to this model, the number of offspring
surviving to adulthood was not statistically associated with
the women’s probability to survive to the post-menopausal
period (Table 4): one additional offspring surviving to

TABLE 2 Correlation matrix of the life-history traits used as effect
indicators

1 2 3

Number of offspring surviving (1) 1.000

Mean interbirth interval (2) 0.446 1.000

Age at last reproduction (3) 0.406 0.473 1.000
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adulthood increased the women’s odds of surviving to post-
reproductive period by 2.4% (95% CIs5 0.89, 1.16) only.

4 | DISCUSSION

Revealing causality is the ultimate goal for scientific research
(Pearl, 2009; Shipley, 2000). This task becomes very

demanding when an experimental approach cannot be under-
taken. In correlative research, our understanding of the com-
plex model systems under study is often limited to an extent
that confounding of causal inference owing to missing varia-
bles is very likely. Further development of underlying theory
can assist in overcoming such obstacles to some degree.
When additionally dealing with hard-to-measure constructs,
statistical models that explicitly incorporate that uncertainty

TABLE 4 The results of a multiple regression model examining the influence of women’s number of offspring surviving to adulthood, mean
interbirth interval, and age at last reproduction on whether they survived to the postreproductive period

b bstdXY S.E z P-value

Partial regression coefficients (b)

Number of adult offspring 0.024 0.027 0.070 0.374 0.729
Age at last reproduction 0.172 0.471 0.032 5.330 <0.0001
Mean interbirth interval 0.010 0.064 0.130 0.074 0.941

Thresholds

Survival to post-reproductive period 5.413 1.123 4.821 <0.0001

Note: All the multiple regression coefficients are on logit-scale. Standardized loadings (bstdXY) represent fully standardized solutions for effect indicators. The total
number of parameters estimated was 4.

TABLE 3 The results of SEM examining the influence of women’s lifetime reproductive effort on whether they survived to post-reproductive
period or not

b bstdXY S.E z P-value

Factor loadings (k)

Lifetime reproductive effort
Number of adult offspring 1.000 0.572
Age at last reproduction 3.860 0.810 0.560 6.887 <0.0001
Mean interbirth interval 0.505 0.595 0.049 10.379 <0.0001

Structural path coefficients (b)

Survival to postreproductive period
Lifetime reproductive effort 0.983 0.206 4.771 <0.0001

Intercepts

Number of adult offspring 4.045 0.106 38.123 <0.0001
Age at last reproduction 39.312 0.290 135.341 <0.0001
Mean interbirth interval 2.095 0.055 38.066 <0.0001

Thresholds

Survival to postreproductive period 21.556 0.164 29.519 <0.0001

Variances (/)

Lifetime reproductive effort 1.619 0.312 5.185 <0.0001

Residual variances (d)

Number of adult offspring 3.339 0.359 9.300 <0.0001
Age at last reproduction 12.618 3.495 3.611 <0.0001
Mean interbirth interval 0.751 0.114 6.570 <0.0001

Note: All the loadings of lifetime reproductive effort are on raw scale while the structural coefficient from lifetime reproductive effort to survival to postreproductive
period is on logit-scale. Distributional locations are given as intercepts and thresholds for continuous and discrete responses, respectively. Standardized loadings
(bstdXY) represent fully standardized solutions for effect indicators. The total number of parameters estimated was 11.
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into constructs of interest can further bring us closer to the
causal effects we are searching for.

Inference problems owing to measurement error in inde-
pendent variables has been known in statistics for more than
a century now (Spearman, 1904) and the solution provided
by SEM to this problem has been previously highlighted in
biological sciences (Grace, 2006; Pugesek, Tomer, & von
Eye, 2003; Shipley, 2000), but to date few studies have taken
a full advantage of a multiple-indicator latent variable
approach. Although an approach based on an a priori esti-
mate of measurement error of constructs can also be adopted
in a SEM framework by using latent variables with single
indicators and fixed error variances (e.g., Hayduk & Littvay
2012), the use of multiple indicators to account for the
imperfect measurement of latent constructs does not require
researchers to predefine its error variance. Such approaches
may be problematic if these uncertainties cannot be quanti-
fied with reasonable accuracy, particularly if construct valid-
ity is in question (Pugesek & Tomer 1995), which is likely
the case in estimating lifetime reproductive effort in humans
used as an example in this article. Naturally, SEM with
multiple-indicator latent variables is not a solution in all sit-
uations. When there are multiple sources of measurement
error that are not well captured by the indicators, and thus
not properly modelled, structural estimates from SEM can be
biased (DeShon, 1998).

In addition to these approaches, there are statistical
approaches that do not assume that independent or dependent
variables are measured without error, such as (reduced)
major axis regression (or type 2 regressions) used in studies
of allometry (Warton, Wright, Falster, & Westoby, 2006).
However, the applicability of these regression methods to
study biological questions has been recently heavily critized
(Hansen & Bartoszek, 2012; Smith, 2009). Some of the most
recent approaches consider measurement error in variables as
a missing data problem (Blackwell, Honaker, & King, 2015).
However, a major advantage of SEM for human life history
research lies in its great flexibility to accommodate, for
example, non-Gaussian multilevel and longitudinal models
as well as a Bayesian approach (e.g., Hoyle, 2012; Song &
Lee, 2012).

The discrepancy between how lifetime reproductive
effort is defined in life history theory and how the predictions
involving lifetime reproductive effort have currently been
tested in correlative human data provides an example where
measurement error likely plays a role. That is, previous
investigations on the trade-off between lifetime reproductive
effort and postreproductive survival, a core explanation for
the evolution of senescence (Kirkwood & Rose, 1991; Wil-
liams, 1957), have failed to recognize the mismatch between
what is exactly predicted by the theory and whether the sta-
tistical approaches currently in use in our field can appropri-
ately test these predictions with the available data. This

mismatch inevitably leads to unpredicted inconsistency in
causal effects due to measurement error in women’s lifetime
reproductive effort (Antonakis et al. 2010, 2014; Cole &
Preacher, 2014), which may partly explain the mixed results
found in human studies examining costs of reproduction
(Gagnon, 2015; Helle et al., 2005; Hurt et al., 2006; Jasien-
ska, 2009; Le Bourg, 2007). Although there have also been
recent efforts to examine the costs of reproduction at the
genetic level in humans (G€ogele et al., 2011; Wang, Byars,
& Stearns, 2013), and presumably such studies are likely to
increase in number in the future owing to greater data avail-
ability, our current knowledge in this area relies heavily on
phenotypic associations that are particularly vulnerable to
methodological problems like measurement error in corre-
lated predictors.

The example presented here was designed for illustrative
purposes only, and thus should not be taken as a scientific
investigation of a trade-off between lifetime reproductive
effort and post-menopausal survival in women. Because the
current analysis fully ignored the potential confounding
owing to differences in resource availability among women
and other potentially important covariates for this question,
the finding that increased lifetime reproductive effort in
women increased, rather than decreased, their odds of surviv-
ing to the postmenopausal period is expected at the pheno-
typic level but unlikely to represent a causal effect of
reproductive effort on somatic senescence (van Noordwijk &
de Jong, 1986). Nevertheless, the current modeling exercise
clearly shows the statistical consequences of not accounting
for measurement error in underlying constructs and how this
can profoundly alter the conclusions drawn from the data.
Had we used a multiple regression model assuming that
women’s lifetime reproductive effort is fully captured by
their number of adult offspring, and is thus measured without
error, we would have concluded that women’s lifetime repro-
ductive effort was unrelated to women’s probability to sur-
vive to the post-menopausal period. This example thus
demonstrates the classical attenuation of regression coeffi-
cients due to measurement error in independent variables
(Antonakis et al., 2010, 2014; Spearman, 1904).

It is pivotal to understand that the adverse consequences
of measurement error in independent variables on (partial)
regression estimates does not primarily depend on the data
analyzed per se, but on the critical assumption of whether
the researcher believes he/she has accurately measured the
construct of interest or not. That is, do the variables included
in the analysis reliably represent the theoretical constructs
they should be measuring (i.e., validity of measurements)?
For example, the argument and the analysis presented here
relied on the premise that it is the amount of limited ener-
getic resources allocated in reproduction during the lifetime
(i.e., lifetime reproductive effort) that causes variation in old-
age survival (Kirkwood & Rose, 1991), but that in humans
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those resources cannot be measured without error, particu-
larly using demographic data. However, if reproductive costs
in women are mainly mediated via other than energetic path-
ways responding to environmental resource availability (e.g.,
Edwards & Chapman, 2011) and if those pathways can be
properly measured by the existing demographic data, or if
the number of offspring surviving to adulthood precisely
enough captures variation in women’s lifetime reproductive
effort, then it would be completely legitimate to ignore mea-
surement error in this construct and to rely on the results
obtained from a regular multiple regression model.

The life history traits used here as effect indicators, cau-
sally reflecting women’s lifetime reproductive effort, were
mainly chosen for illustrative purposes in mind. As indicated
by the reliability of the latent variable, 34% of the variance
(but plausibly as much as 45%) in women’s lifetime repro-
ductive effort was left unexplained by OFS, MIBIs, and
ALR. In other words, women’s lifetime reproductive effort
as a latent variable still contained a fair amount of measure-
ment error. Naturally, a researcher could use other effect
indicators if available, or preferably include more effect indi-
cators to increase the reliability of the latent variable of inter-
est. However, one should not try to blindly add more life
history traits as effect indicators to model latent lifetime
reproductive effort: not all the life history traits available
from demographic data may satisfy the assumption that life-
time reproductive effort has a causal effect on the trait. There
are other alternative, more flexible ways to specify measure-
ment models in SEM that can handle a more complex set of
observed variables by, for example, allowing negative or
zero associations among indicators as well as more complex
causal structures (Bollen & Bauldry, 2011). We were also
assuming that the indicators recorded here were truly meas-
uring women’s lifetime reproductive effort. In theory, this
may not have been the case and we might have actually
measured some other construct or constructs, causing varia-
tion in the life history traits used here (Kline, 2015).

This article has hopefully increased the awareness of sev-
eral, usually hard-to-meet assumptions that commonly used
regression approaches make. Ignoring those assumptions will
severely limit their usefulness to make valid biological con-
clusions from the data. In addition to measurement error in
the independent variables discussed here, reciprocal causality
between dependent and independent variables in cross-
sectional data, missing confounding variables, and autocorre-
lated and nonindependent residuals also undermine causal
inference in regression modeling (Antonakis et al., 2010,
2014). Some even consider the resulting “associations” from
studies unable to confront to these assumptions scientifically
uninteresting since the magnitude and direction of such asso-
ciations can easily be spurious (Antonakis et al., 2010).
Because human life history research rests mainly on correla-
tive data, the researchers should pay more attention to

measurement theory and how imperfect measurements can
be incorporated into the statistical analyses.
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